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Abstract. Domain generation algorithms are commonly used by mal-
ware to generate command and control domains to contact during execu-
tion, avoiding having to use fixed IP addresses or DNS domains, which
are easily blockable. During the last years, many solutions have been
proposed for the detection of algorithmically generated domains (AGDs)
based on artificial intelligence. However, there is no common umbrella
that allows experiments to be replicated under the same conditions, mak-
ing it difficult to ensure how good one solution is compared to the others.
To address the current lack of a common environment for model com-
parison, in this work we present a framework focused on training and
comparing artificial intelligence models for AGDs detection. As a use
case, we have implemented and evaluated the models proposed in the
latest works in this field, showing its applicability.
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1 Introduction

Command and Control (C&C) is one of the stages of a cyberattack, according to
the Cyber Kill Chain [5] model. During this stage, the attacker sets up a C&C
channel to remotely manage the compromised system, allowing them to send
commands and control malware that has been installed on the target system.

Domain Generation Algorithms (DGAs) emerged since 2009 [6] as a way to
avoid traditional methods of blocking known C&C domains and IP addresses. By
constantly generating new domain names (known as algorithmically generated
domains or AGDs), DGAs make it difficult for security systems to block or
blacklist all possible domains that malware might use for communication.

The detection of malicious AGDs has been an important research topic in the
last 15 years [6]. Different detection solutions have been proposed, mainly based
on artificial intelligence [3, 8–12]. However, a common pitfall in the literature is
the difficulty in comparing different proposed models [2,4], mainly due to the fact
that they do not freely share their implementations (thus hiding internal details
of the model configuration) and because the datasets used in the evaluation are
not provided (thus making a fair comparison difficult).
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To address these issues, we propose a framework for training and comparing
artificial intelligence models for DGA detection. This standardized procedure en-
ables the creation and comparison of new models in a consistent experimentation
environment, thereby enhancing detection capabilities.

2 Our Framework and Preliminary Results

Our framework consists of two components: the Core module, which includes
all execution logic, and the Dataset Manager module, which manages dataset
processing. New models must adhere to the Classifier schema, and users need to
define the Data Element and Result, representing the training data and evalua-
tion metrics, respectively.

This framework has been used to train and compare several models found in
the literature and reproducible [3,8–12]. We built a dataset composed of 250,000
malicious domains obtained from [7] (from 76 different malware families) and
250,000 non-malicious domains that have been obtained from the Tranco list [1].
This dataset was split 70%/15%/15% into training, validation, and test datasets,
respectively. Metric results on the test datasets are shown in Table 1, where the
best result for each metric is highlighted.

The results show that simpler models tend to achieve better results when
considering a large number of different families. Due to their simplicity, they need
to generalize more and are therefore more robust to detect DGAs from different
families. For the sake of open science, the framework and the implementation of
models are released under GNU/GPLv3 on our GitHub [ANONYMIZED].

Model (Year) Acc Prec Rec F1 FPR TPR MCC κ
LSTM [9] (2016) 95.42 97.39 95.69 96.53 5.12 95.69 89.82 0.8045
LSTM [11] (2017) 95.44 97.25 95.87 96.55 5.40 95.87 89.84 0.8059
CNN [11] (2017) 94.96 97.39 94.98 96.17 5.07 94.98 88.86 0.7849
LSTM [10] (2018) 95.02 96.82 95.67 96.24 6.27 95.67 88.88 0.7896
CNN [10] (2018) 92.94 96.29 92.99 94.61 7.16 92.99 84.49 0.7056
CMU [12] (2018) 94.87 97.46 94.77 96.10 4.92 94.77 88.69 0.7810
MIT [12] (2018) 95.48 96.96 96.23 96.59 6.03 96.23 89.87 0.8083

Parallel CNN [12] (2018) 93.48 96.64 93.48 95.03 6.49 93.48 85.68 0.7265
Baseline [12] (2018) 86.51 93.36 85.87 89.46 12.19 85.87 71.31 0.4745

MLP [12] (2018) 92.59 96.41 92.32 94.32 6.86 92.32 83.84 0.6907
CNN [3] (2019) 95.28 97.08 95.81 96.44 5.76 95.81 89.48 0.7998

Max Pooling [3] (2019) 90.48 95.62 89.84 92.64 8.21 89.84 79.53 0.6107
LSTM [3] (2019) 92.40 96.98 91.44 94.13 5.68 91.44 83.67 0.6804

LSTM + CNN [3] (2019) 83.88 94.12 80.87 86.99 10.09 80.87 67.44 0.3796
Bidireccional [3] (2019) 93.40 95.92 94.10 95.00 8 94.10 85.33 0.7261

DBD [8] (2019) 94.19 96.92 94.28 95.58 5.98 94.28 87.18 0.7545
Acc: accuracy; Prec: Precision; Rec: Recall; F1: F1-score; FPR: False Positive Rate; TPR:
True Positive Rate; MCC: Matthews’s Correlation Coefficient; κ: Cohen’s Kappa Score

Table 1: Results obtained with our framework from different models.
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